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Abstract. Historical analogue audio documents are indissolubly linked
to their physical carriers on which they are recorded. Because of their
short life expectancy these documents have to be digitized. During this
process, the document may be altered with the result that the digital
copy is not reliable from the authenticity point of view. This happens
because digitization process is not completely automatized and some-
times it is influenced by human subjective choices. Artificial intelligence
can help operators to avoid errors, enhancing reliability and accuracy,
and becoming the base for quality control tools. Furthermore, this kind
of algorithms could be part of new instruments aiming to ease and to
enrich musicological studies.
This work focuses the attention on the equalization recognition problem
in the audio tape recording field. The results presented in this paper,
highlight that, using machine learning algorithms, is possible to recognize
the pre-emphasis equalization used to record an audio tape.

Keywords: audio tape equalization, automatic recognition of physical
carrier peculiarities, quality control tool for digitization process, artificial
intelligence for musicological analysis

1 Introduction

In the last years, the musicology research field has greatly expanded its orig-
inal scope by embracing new different research disciplines and methodologies
[1]. The potentialities of computer science applied to musicological studies were
clear several decades ago when the interdisciplinary domain of computational
musicology arose [2], and already in those ages the term artificial intelligence
was preponderant. In recent years, research in this field tries to exploit machine
learning algorithms in order to obtain meaningful musical concepts and develop
models with which to make predictions. Usually these analysis is based on mu-
sical features obtained from audio, text or notated score [1].



Unlike born-digital audio files, historical analogue audio documents are in-
dissolubly linked to their physical carriers, on which they are recorded, and to
the related audio player (gramophone, tape recorder/player), strongly defining
the listening experience [3]. In some case, the peculiarities of the carrier heavily
influence musical works and they must be considered during the musicological
analysis. However the common analysis, previously described, mainly investigate
on musical contents of digital file without considering aspects related to physical
carrier.

Nevertheless, scholars can only works on digitized copies of the audio doc-
uments because usually original carriers and related playback devices are not
available or even missing. Furthermore, these two elements have a short life time
expectancy, because of physical degradation and obsolescence, and the only way
to maintain the information is to transfer data onto new media and to create a
digital preservation copy (active preservation) [4].

Unfortunately, during this process, the history of the document may be dis-
torted and the documentary unit can be broken with the result that the digital
copy is not reliable from the authenticity point of view [5]. It usually happens
since the process is not completely automatized and sometimes it is influenced by
human subjective choices. In this case, artificial intelligence can help operators
to avoid errors, enhancing reliability and accuracy of the process. Starting from
the analysis of digital copies, AI can discover peculiarities related to the carrier
and decide necessary actions to be performed by operators. These kinds of algo-
rithms could be also the base for quality control systems applied to digitization
process.

Despite of these problems, the creation of a digital copy can be considered as
an opportunity to improve the quality of the musicological analysis. For example,
an automatic tool could be useful to investigate the manipulation of the carrier
and allow to recreate its history when some information is missing. A step in
this direction was done in [5] analyzing video recordings of the tape in order
to discover particular elements of the tape itself during the digitization process.
On the contrary, in this paper, a study on automatic tools for audio signal
analysis is presented, using audio tape recordings as case study. In the Section
2, the peculiarities of this kind of historical audio documents and a first problem
to resolve in order to safeguard the authenticity of the preservation copy is
described. In the Section 3, the experiment based on most common machine
learning techniques is summerised. The results and further developments opened
by this work are discussed in Section 4 and 5.

2 Case study: audio tape recordings

Magnetic tape for audio recordings was invented by German Fritz Pfleumer
in 1928. Reel-to-reel audio tape recordings rapidly became the main recording
format used by professional recording studio until the late 1980s and, for this
reason, numerous sound archives preserve large number of audio tapes.
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As for every type of analogue carrier, the magnetic tape is also subjected
by physical degradation, that can be slowed down but not arrested. So, the
digitization process is necessary to prevent that the document reach a level of
degradation from which the information is no more accessible [5]. This recording
technology is the perfect case study because the constraints imposed by its me-
chanical and physical limits could be used itself to create music. A clear example
is tape music, where the composer becomes also the luthier and the performer of
the product recorded on the tape, that can be considered an unicum [3]. Further-
more, the magnetic tape is strictly linked to its playback device: the reel-to-reel
tape recorder. Before pressing the play button, the machine has to be configured
to correctly playback the recordings on the tape and any error implies an audio
alteration and the loss of the preservation copy authenticity.

The main two parameters to be configured are reel replay speed and equal-
ization. In this work, only 15 ips (38.1 cm/s) and 7.5 ips (19.05 cm/s) reel replay
speed have been considered since they are the most commonly used standards
for audio tape.

As far as equalization parameter concerns, during the recording process, the
source signal is modified applying an equalization that alter the frequency re-
sponse (application of a pre-emphasis curve) in order to maximize the SNR of
the recorded signal [6]. This alteration has to be compensated during the read-
ing of the tape with a juxtaposition of an inverse curve (post-emphasis curve) in
order to obtain the original audio signal. The main standards adopted are CCIR
also referred as IEC1 [7], mostly used in Europe and NAB, alternatively called
IEC2 [8], mostly adopted in USA. It is important to underline that curves of the
same standard can be different according to the reel speed. For example, the cut
off frequency of the filter in CCIR differs from 7.5 ips to 15 ips.

Often, speed and equalization standards are not indicated in the carriers. As
reported in [9], sometimes any lack of documentation may require the operator to
make decisions aurally. The experiment in [10] shows how this task is error-prone.
To avoid subjectivity and therefore errors, that can damage the correctness of
the preservation copy, the authors proposal is to create a software tool able to
discern the correct equalization. This solution is useful not only to aid operators
in the digitization process, but can be useful also for musicologists: if they study
a digitized copy of unknown provenance they can prove the correctness of the
digitization and, if necessary, compensate the error.

3 Equalization recognition

This work wants to prove that machine learning algorithms are able to recognize
equalizations using features extracted from small samples of a digitized tape.
The experiment is based on four datasets developed in laboratory. They are
composed by samples that cover all the combinations of right and wrong chain
of filters that can occur while audio tapes are digitized (Tab.1). The samples are
characterized by two speeds: 7.5 and 15 ips. For each of the two speeds, white
noise has been recorded on half of the samples, while the remaining have been
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Table 1. Characterization of the four dataset used in the experiment regarding audio
content and recording/reeding speed

Recording/Speed 7.5 ips 15 ips

Silence dataset A dataset C

White noise dataset B dataset D

recorded with a silence track (silence were recorded on the virgin tape and then
acquired). Every dataset contains four type of samples made alternating CCIR
and NAB equalization in pre- and post-emphases. The four resulting pairs are
CCIR-CCIR (CC), NAB-NAB (NN), CCIR-NAB (CN) and NAB-CCIR (NC).
In other words, the first two pairs have the correct juxtaposition of the recording
equalization with the writing one, while the other pair is reading the tape with
an uncorrected equalization. In this analysis, combination between the two speed
has not been taken into account (i.e., NAB at 7.5 ips with CCIR at 15 ips ). The
samples have been obtained using always the same machine and recorded onto
two virgin tapes. Every dataset is composed by 1200 samples with a duration of
one second: 300 samples for each categories. With the Matlab tool Mirtoolbox
(Music Information Retrieval Toolbox [11]), 13 Mel-Frequency Cepstral Coef-
ficients (MFCCs) has been extracted. These features, originally developed for
speech-recognition systems, have given good performance for a variety of audio
classifications [12] and they allow a low computational cost and a fast train-
ing. For these reasons, the vectors of 13 coefficients have been chosen for the
machine learning algorithms. The objective is to evaluate if these algorithms
are able to discern automatically the samples and to group them in different
clusters/classes.

The experiment is divided in two steps: cluster analysis and classification.
The first step exploits the two main methods of cluster analysis (unsupervised
learning): hierarchical clustering and K-means clustering. In the first method,
different distance measures (i.e. euclidean, chebychev, cosine, etc.) and linkage
methods (i.e. average, single, etc.) have been used (with the constraint of maxi-
mum four clusters) while, in the second, the parameters were distance measures
and number of clusters (cluster from 2 to 4). The number of different combi-
nations for the first method is 188 (47 x 4), whereas for the second is 48 (12 x
4).

The second step exploits three of the most common techniques of supervised
learning: Decision Tree, K-Nearest Neighbors, Support Vector Machine (SVM).
Concerning the first technique, three presets of classifier have been used and they
mainly differ for the maximum number of splits: Simple Tree (maximum 4 splits),
Medium Tree (maximum 20 splits) and Complex Tree (maximum 100 splits). The
SVM has been used in five variants which differ for the kernel function: Linear,
Quadratic, Cubic, Fine and Gaussian. The Nearest Neighbors classifier has been
tested in six variants which differ for number of neighbors and distance metric:
Fine, Medium, Coarse, Cosine, Cubic and Weighted. K-Fold Cross-Validation
(with k = 4) is the model validation technique used for the experiment. Every
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dataset has been divided in a training set with the 75% of the cepstral coefficients
vectors available and a test set with the other 25% of the samples and each group
of test are analyzed with the twelve classifiers described above.

4 Results

4.1 Clustering results

The preliminary results are obtained from the clustering analysis and are the
following:

– in the case of white noise recordings, dataset B and D, is possible to highlight
a first cluster containing the samples generated with the right chain of filters
(NN, CC), a second containing one of the wrong juxtaposition of filters (NC)
and a third with the other wrong juxtaposition;

– in the case of silence tracks, is possible to identify a cluster describing samples
with NAB post-emphases filter and another describing samples with CCIR
post-emphases filter.

Most of the different combinations of distances and linkage methods of Hierarchi-
cal clustering are able to discern white noise samples. Tab.2 presents an example
of good result obtained with Hierarchical clustering. In general, K-means does
not work for this kind of samples, excepting for the algorithm that use distance
emph cityblock that is able to discern the three clusters. Vice versa, the opposite
trend can be observed for silence samples, where K-Means algorithms achieved
good results using most of the distances, while Hierarchical is able to divide sam-
ples in only few exceptions. An example could be observed in Tab.3. One further
observation to point out is that there are few differences between the clustering
obtained from 7.5 ips and 15 ips samples. In general, this result was expected,
since the only differences are in the cut-off frequency in CCIR equalization (from
2kHz to 4kHz) and this should not compromise the analysis [7].

While the clusterings obtained from the white noise recordings were ex-
pected, the one obtained by the silence tracks can be explained with [13], where
Mallinson analysis found that the dominant noise source in modern tape recorders
is mostly originated from both the reproduce head and the recording medium
itself and not from the write head. Therefore, in the case of silence samples, the
background noise due to the write head is not powerful enough to be discerned
from the one generated from the reading one.

Table 2. Four clusters of white noise samples resulting from Hierarchical clustering
with Euclidean distance and centroid as linkage methods

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4

Distance CC CN NC NN CC CN NC NN CC CN NC NN CC CN NC NN

# samples 0 0 2 0 0 0 298 0 0 300 0 0 300 0 0 300
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Table 3. Two clusters of silence samples resulting from K-Means clustering with
squared Euclidean distance

Cluster Cluster 1 Cluster 2

distance CC CN NC NN CC CN NC NN

# samples 8 300 8 299 292 0 292 1

4.2 Classification results

In this experiment, the K-Fold Cross Validation is used to evaluate the capability
of the model to divide the dataset in:

1. correct equalization and wrong equalization;

2. correct equalization, CN, NC;

3. all four pairs of pre- and post-emphases juxtaposition;

4. post-emphases curves.

The last group of test has been added considering the results of the first step. In
fact, the objective of this work is to detect the pre-emphases curve but the results
obtained in the first step highlight the possibility to detect the post-emphases
equalization for the silence track. The results of classification confirm the one
of clustering analysis: the noisy datasets allow to detect the correct equalization
and discriminate between the two wrong chain of filters, whereas the silence
dataset is useful to detect only the post-emphases curve. Even in this case there
are no differences between 7.5 ips and 15 ips.

To be more precise, in the first two groups of tests, the indexes of performance
of the classification are 1 or very close to that for white noise samples. In both
the datasets, the best classification is obtained with the Decision Tree classifiers
(simpleTree, mediumTree, complexTree) where the indexes of Accuracy, Recall,
Specificity are exactly 1.

In the third group, for 15 ips samples the results show indexes are equal or
near to one for CN and NC, but not for CC and NN classes. In other words,
the classifiers correctly recognize the wrong equalization pairs but have some
difficulties to discern the correct pairs (CC, NN), confirming the results obtained
with clustering analysis. For 7.5 ips, an unexpected result arise with cubicSVM
on white noise samples dataset: the indexes are 1 for CN and NC classes and
tend to the same value for the CC and NN classes. In other words, the classifier
is able to recognize all the four type of samples. More details are shown in Tab.4
, where the Accuracy of the classification is 0.97. This result could be explained
by non ideal analogue filters or small misalignment in the calibration procedure.

In the last group, the best results are obtained with cubicSVM on the silence
samples dataset. As expected from the clustering analysis the silence samples
allow to precisely detect the post-emphases equalization. As in the first two
group of test the indexes of Accuracy, Recall, Specificity are exactly 1.

22



Table 4. Indexes of the classification with the four combination of filters on white
noise samples using cubic SVM. The accuracy of this test is 0.97

filtersChain Recall Specificity Precision

CC 0.907 0.996 0.986

NC 1 1 1

CN 1 1 1

NN 0.987 0.969 0.926

5 Conclusions and future works

This paper highlights the main problems concerned the physical carriers of ana-
logue audio documents during the digitization process and the musicological
analysis. The strictly link between carrier and content defines the listening ex-
perience, therefore it is important to preserve it in the digital copy. The creation
of a correct preservation copy require firstly the certainty of the correct configu-
ration of the reply machine. This step is not easy to accomplish due to different
standards used for tape recorders. In this case, AI tools can simplify the work of
operators, helping them in some decisions that must be taken during the digiti-
zation process and becoming the base of quality control systems. Furthermore,
they could be part of new instruments aiming to ease and to enrich musicological
studies.

The results of the preliminary study presented in this paper, highlight that,
using machine learning algorithms, is possible to recognize the pre-emphasis
equalizations used to record the tapes. This allows to use the correct inverse
equalization during the digitization process, balancing the recording equalization
and obtaining the original sound.

This encouraging result, obtained from recordings of white noise and silence
tracks recorded in laboratory, open the way to further experiments with “real”
datasets with samples extracted directly from historical audio recordings. The
data collected from this new dataset could be used to compare the results ob-
tained with the ones from [10], to have a comparison between human and arti-
ficial classification. In addition, a further work could be the study of additional
features to increase the performance of the AI algorithms with more informa-
tion on the spectral behaviors. This is only a small step toward the development
of AI tools for quality control and musicological analysis of digitized analogue
recordings, but can surely considered a not negligible first step.
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